Polytopes for Crystallized Demazure Modules and Extremal Vectors

نویسنده

  • Toshiki NAKASHIMA
چکیده

Demazure’s character formula for arbitrary Kac-Moody Lie algebra was given by S.Kumar and O.Mathieu independently ([6],[8]) by using geometric methods. In 1995, P.Littelmann gave some conjecture (partially solved by himself) about the relation between Demazure’s character formula and crystal bases [7], which was solved affirmatively by M.Kashiwara [3]. Then it gave purely algebraic proof for Demazure’s character formula for symmetrizable Kac-Moody Lie algebras. Here let us see those formulations. Let g be a symmetrizable Kac-Moody Lie algebra (in the context of “crystal base”, we need “symmetrizable”), and n be the nilpotent subalgebra of g. Furthermore, let Z[P ] be the group algebra of the weight lattice P and W be the Weyl group associated with g. Then Demazure operator Dw : Z[P ] −→ Z[P ] (w ∈ W ) is given as follows: for i ∈ I (index set) we set Di(e ) := e(1 − eii)/1− ei and for w = sil · · · si1 set Dw := Dil · · ·Di1 , which is well-defined. Let V (λ) be the irreducible highest weight module with the highest weight λ and uwλ be the extrmal vector with the weight wλ (w ∈ W ). Then, Demazure’s character formula is described as follows: ch(U(n)uwλ) = Dw(e ). (1.1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quiver Varieties and Demazure Modules

Using subvarieties, which we call Demazure quiver varieties, of the quiver varieties of Nakajima, we give a geometric realization of Demazure modules of Kac-Moody algebras with symmetric Cartan data. We give a natural geometric characterization of the extremal weights of a representation and show that Lusztig's semicanonical basis is compatible with the filtration of a representation by Demazur...

متن کامل

2 1 Se p 20 04 QUIVER VARIETIES AND DEMAZURE MODULES

Using subvarieties, which we call Demazure quiver varieties, of the quiver varieties of Nakajima, we give a geometric realization of Demazure modules of Kac-Moody algebras with symmetric Cartan data. We give a natural geometric characterization of the extremal weights of a representation and show that Lusztig's semicanonical basis is compatible with the filtration of a representation by Demazur...

متن کامل

Level Zero Fundamental Representations over Quantized Affine Algebras and Demazure Modules

Let W (̟k) be the finite-dimensional irreducible module over a quantized affine algebra U ′ q(g) with the fundamental weight ̟k as an extremal weight. We show that its crystal B(W (̟k)) is isomorphic to the Demazure crystal B −(−Λ0 +̟k). This is derived from the following general result: for a dominant integral weight λ and an integral weight μ, there exists a unique homomorphism Uq(g)(uλ⊗ uμ) → V ...

متن کامل

Convex Polytopes: Extremal Constructions and f -Vector Shapes

These lecture notes treat some current aspects of two closely interrelated topics from the theory of convex polytopes: the shapes of f -vectors, and extremal constructions. The study of f -vectors has had huge successes in the last forty years. The most fundamental one is undoubtedly the “g-theorem,” conjectured by McMullen in 1971 and proved by Billera & Lee and Stanley in 1980, which characte...

متن کامل

Gelfand-zetlin Polytopes and Flag Varieties

I construct a correspondence between the Schubert cycles on the variety of complete flags in Cn and some faces of the Gelfand-Zetlin polytope associated with the irreducible representation of SLn(C) with a strictly dominant highest weight. The construction is based on a geometric presentation of Schubert cells by Bernstein–Gelfand– Gelfand [2] using Demazure modules. The correspondence between ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000